Pelajari cara memprogram papan ESP32 atau ESP8266 dengan MicroPython untuk menerbitkan pembacaan sensor BME280 (suhu, kelembaban, dan tekanan) via MQTT ke platform apa pun yang mendukung MQTT atau ke klien MQTT mana pun. Sebagai contoh, kami akan menerbitkan data sensor ke Node-RED Dashboard.
Gambaran Proyek
Diagram berikut menunjukkan gambaran tingkat tinggi dari proyek yang akan kita bangun.
1. ESP membaca data suhu, kelembapan, dan tekanan dari sensor BME280.
2. Data suhu diterbitkan (published) ke topik esp/bme280/temperature.
3. Data kelembapan diterbitkan ke topik esp/bme280/humidity.
4. Data tekanan diterbitkan ke topik esp/bme280/pressure.
5. Node-RED berlangganan (subscribe) ke topik-topik tersebut.
6. Node-RED menerima data sensor dan menampilkannya pada dashboard.
7. Anda dapat menerima data di platform lain yang mendukung MQTT dan mengolahnya sesuai kebutuhan.
MQTT Broker
Untuk menggunakan MQTT, Anda memerlukan sebuah broker. Kami akan menggunakan broker Mosquitto yang diinstal pada Raspberry Pi.
Komponen yang Diperlukan
Untuk tutorial ini, Anda memerlukan komponen-komponen berikut:
- ESP32 atau ESP8266
- Sensor BME280
- Papan Raspberry Pi
- Kartu MicroSD – 16GB Class10
- Catu Daya Raspberry Pi (5V 2.5A)
- Kabel jumper
- Papan breadboard
Library umqttsimple
Untuk menggunakan MQTT dengan ESP32/ESP8266 dan MicroPython, kami akan menggunakan library `umqttsimple.py`. Ikuti set instruksi berikut sesuai dengan IDE yang Anda gunakan:
- Unggah Library `umqttsimple` dengan uPyCraft IDE
- Unggah Library `umqttsimple` dengan Thonny IDE
try:
import usocket as socket
except:
import socket
import ustruct as struct
from ubinascii import hexlify
class MQTTException(Exception):
pass
class MQTTClient:
def __init__(self, client_id, server, port=0, user=None, password=None, keepalive=0,
ssl=False, ssl_params={}):
if port == 0:
port = 8883 if ssl else 1883
self.client_id = client_id
self.sock = None
self.server = server
self.port = port
self.ssl = ssl
self.ssl_params = ssl_params
self.pid = 0
self.cb = None
self.user = user
self.pswd = password
self.keepalive = keepalive
self.lw_topic = None
self.lw_msg = None
self.lw_qos = 0
self.lw_retain = False
def _send_str(self, s):
self.sock.write(struct.pack("!H", len(s)))
self.sock.write(s)
def _recv_len(self):
n = 0
sh = 0
while 1:
b = self.sock.read(1)[0]
n |= (b & 0x7f) << sh
if not b & 0x80:
return n
sh += 7
def set_callback(self, f):
self.cb = f
def set_last_will(self, topic, msg, retain=False, qos=0):
assert 0 <= qos <= 2
assert topic
self.lw_topic = topic
self.lw_msg = msg
self.lw_qos = qos
self.lw_retain = retain
def connect(self, clean_session=True):
self.sock = socket.socket()
addr = socket.getaddrinfo(self.server, self.port)[0][-1]
self.sock.connect(addr)
if self.ssl:
import ussl
self.sock = ussl.wrap_socket(self.sock, **self.ssl_params)
premsg = bytearray(b"\x10\0\0\0\0\0")
msg = bytearray(b"\x04MQTT\x04\x02\0\0")
sz = 10 + 2 + len(self.client_id)
msg[6] = clean_session << 1
if self.user is not None:
sz += 2 + len(self.user) + 2 + len(self.pswd)
msg[6] |= 0xC0
if self.keepalive:
assert self.keepalive < 65536
msg[7] |= self.keepalive >> 8
msg[8] |= self.keepalive & 0x00FF
if self.lw_topic:
sz += 2 + len(self.lw_topic) + 2 + len(self.lw_msg)
msg[6] |= 0x4 | (self.lw_qos & 0x1) << 3 | (self.lw_qos & 0x2) << 3
msg[6] |= self.lw_retain << 5
i = 1
while sz > 0x7f:
premsg[i] = (sz & 0x7f) | 0x80
sz >>= 7
i += 1
premsg[i] = sz
self.sock.write(premsg, i + 2)
self.sock.write(msg)
#print(hex(len(msg)), hexlify(msg, ":"))
self._send_str(self.client_id)
if self.lw_topic:
self._send_str(self.lw_topic)
self._send_str(self.lw_msg)
if self.user is not None:
self._send_str(self.user)
self._send_str(self.pswd)
resp = self.sock.read(4)
assert resp[0] == 0x20 and resp[1] == 0x02
if resp[3] != 0:
raise MQTTException(resp[3])
return resp[2] & 1
def disconnect(self):
self.sock.write(b"\xe0\0")
self.sock.close()
def ping(self):
self.sock.write(b"\xc0\0")
def publish(self, topic, msg, retain=False, qos=0):
pkt = bytearray(b"\x30\0\0\0")
pkt[0] |= qos << 1 | retain
sz = 2 + len(topic) + len(msg)
if qos > 0:
sz += 2
assert sz < 2097152
i = 1
while sz > 0x7f:
pkt[i] = (sz & 0x7f) | 0x80
sz >>= 7
i += 1
pkt[i] = sz
#print(hex(len(pkt)), hexlify(pkt, ":"))
self.sock.write(pkt, i + 1)
self._send_str(topic)
if qos > 0:
self.pid += 1
pid = self.pid
struct.pack_into("!H", pkt, 0, pid)
self.sock.write(pkt, 2)
self.sock.write(msg)
if qos == 1:
while 1:
op = self.wait_msg()
if op == 0x40:
sz = self.sock.read(1)
assert sz == b"\x02"
rcv_pid = self.sock.read(2)
rcv_pid = rcv_pid[0] << 8 | rcv_pid[1]
if pid == rcv_pid:
return
elif qos == 2:
assert 0
def subscribe(self, topic, qos=0):
assert self.cb is not None, "Subscribe callback is not set"
pkt = bytearray(b"\x82\0\0\0")
self.pid += 1
struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic) + 1, self.pid)
#print(hex(len(pkt)), hexlify(pkt, ":"))
self.sock.write(pkt)
self._send_str(topic)
self.sock.write(qos.to_bytes(1, "little"))
while 1:
op = self.wait_msg()
if op == 0x90:
resp = self.sock.read(4)
#print(resp)
assert resp[1] == pkt[2] and resp[2] == pkt[3]
if resp[3] == 0x80:
raise MQTTException(resp[3])
return
# Wait for a single incoming MQTT message and process it.
# Subscribed messages are delivered to a callback previously
# set by .set_callback() method. Other (internal) MQTT
# messages processed internally.
def wait_msg(self):
res = self.sock.read(1)
self.sock.setblocking(True)
if res is None:
return None
if res == b"":
raise OSError(-1)
if res == b"\xd0": # PINGRESP
sz = self.sock.read(1)[0]
assert sz == 0
return None
op = res[0]
if op & 0xf0 != 0x30:
return op
sz = self._recv_len()
topic_len = self.sock.read(2)
topic_len = (topic_len[0] << 8) | topic_len[1]
topic = self.sock.read(topic_len)
sz -= topic_len + 2
if op & 6:
pid = self.sock.read(2)
pid = pid[0] << 8 | pid[1]
sz -= 2
msg = self.sock.read(sz)
self.cb(topic, msg)
if op & 6 == 2:
pkt = bytearray(b"\x40\x02\0\0")
struct.pack_into("!H", pkt, 2, pid)
self.sock.write(pkt)
elif op & 6 == 4:
assert 0
# Checks whether a pending message from server is available.
# If not, returns immediately with None. Otherwise, does
# the same processing as wait_msg.
def check_msg(self):
self.sock.setblocking(False)
return self.wait_msg()
Unggah Library umqttsimple dengan uPyCraft IDE
1. Buat file baru dengan menekan tombol New File.
2. Salin kode pustaka `umqttsimple` ke dalamnya.
3. Simpan file dengan menekan tombol Save.
4. Beri nama file baru ini `umqttsimple.py` dan tekan OK.
5. Klik tombol Download and Run.
6. File tersebut akan tersimpan di folder perangkat dengan nama `umqttsimple.py`, seperti yang ditunjukkan pada gambar di bawah.
Sekarang, Anda dapat menggunakan fungsi-fungsi pustaka dalam kode Anda dengan mengimpornya.
Unggah Pustaka umqttsimple dengan Thonny IDE
1. Salin kode library ke dalam file baru.
2. Buka menu File > Save as….
3. Pilih opsi simpan ke "MicroPython device" (Simpan ke perangkat MicroPython).
4. Beri nama file Anda `umqttsimple.py` dan tekan tombol OK.
Selesai. Pustaka telah berhasil diunggah ke papan Anda. Untuk memastikan pengunggahan berhasil, buka File > Save as… dan pilih MicroPython device. File Anda akan terdaftar di sana.
Setelah pustaka berhasil diunggah ke papan ESP, Anda dapat menggunakan fungsinya dalam kode dengan mengimpornya.
Library MicroPython untuk BME280
Pustaka untuk membaca data dari sensor BME280 tidak termasuk dalam library standar MicroPython secara default. Oleh karena itu, Anda perlu mengunggah pustaka berikut ke papan ESP32/ESP8266 Anda (simpan dengan nama `bme280.py`).
from machine import I2C
import time
# BME280 default address.
BME280_I2CADDR = 0x76
# Operating Modes
BME280_OSAMPLE_1 = 1
BME280_OSAMPLE_2 = 2
BME280_OSAMPLE_4 = 3
BME280_OSAMPLE_8 = 4
BME280_OSAMPLE_16 = 5
# BME280 Registers
BME280_REGISTER_DIG_T1 = 0x88 # Trimming parameter registers
BME280_REGISTER_DIG_T2 = 0x8A
BME280_REGISTER_DIG_T3 = 0x8C
BME280_REGISTER_DIG_P1 = 0x8E
BME280_REGISTER_DIG_P2 = 0x90
BME280_REGISTER_DIG_P3 = 0x92
BME280_REGISTER_DIG_P4 = 0x94
BME280_REGISTER_DIG_P5 = 0x96
BME280_REGISTER_DIG_P6 = 0x98
BME280_REGISTER_DIG_P7 = 0x9A
BME280_REGISTER_DIG_P8 = 0x9C
BME280_REGISTER_DIG_P9 = 0x9E
BME280_REGISTER_DIG_H1 = 0xA1
BME280_REGISTER_DIG_H2 = 0xE1
BME280_REGISTER_DIG_H3 = 0xE3
BME280_REGISTER_DIG_H4 = 0xE4
BME280_REGISTER_DIG_H5 = 0xE5
BME280_REGISTER_DIG_H6 = 0xE6
BME280_REGISTER_DIG_H7 = 0xE7
BME280_REGISTER_CHIPID = 0xD0
BME280_REGISTER_VERSION = 0xD1
BME280_REGISTER_SOFTRESET = 0xE0
BME280_REGISTER_CONTROL_HUM = 0xF2
BME280_REGISTER_CONTROL = 0xF4
BME280_REGISTER_CONFIG = 0xF5
BME280_REGISTER_PRESSURE_DATA = 0xF7
BME280_REGISTER_TEMP_DATA = 0xFA
BME280_REGISTER_HUMIDITY_DATA = 0xFD
class Device:
"""Class for communicating with an I2C device.
Allows reading and writing 8-bit, 16-bit, and byte array values to
registers on the device."""
def __init__(self, address, i2c):
"""Create an instance of the I2C device at the specified address using
the specified I2C interface object."""
self._address = address
self._i2c = i2c
def writeRaw8(self, value):
"""Write an 8-bit value on the bus (without register)."""
value = value & 0xFF
self._i2c.writeto(self._address, value)
def write8(self, register, value):
"""Write an 8-bit value to the specified register."""
b=bytearray(1)
b[0]=value & 0xFF
self._i2c.writeto_mem(self._address, register, b)
def write16(self, register, value):
"""Write a 16-bit value to the specified register."""
value = value & 0xFFFF
b=bytearray(2)
b[0]= value & 0xFF
b[1]= (value>>8) & 0xFF
self.i2c.writeto_mem(self._address, register, value)
def readRaw8(self):
"""Read an 8-bit value on the bus (without register)."""
return int.from_bytes(self._i2c.readfrom(self._address, 1),'little') & 0xFF
def readU8(self, register):
"""Read an unsigned byte from the specified register."""
return int.from_bytes(
self._i2c.readfrom_mem(self._address, register, 1),'little') & 0xFF
def readS8(self, register):
"""Read a signed byte from the specified register."""
result = self.readU8(register)
if result > 127:
result -= 256
return result
def readU16(self, register, little_endian=True):
"""Read an unsigned 16-bit value from the specified register, with the
specified endianness (default little endian, or least significant byte
first)."""
result = int.from_bytes(
self._i2c.readfrom_mem(self._address, register, 2),'little') & 0xFFFF
if not little_endian:
result = ((result << 8) & 0xFF00) + (result >> 8)
return result
def readS16(self, register, little_endian=True):
"""Read a signed 16-bit value from the specified register, with the
specified endianness (default little endian, or least significant byte
first)."""
result = self.readU16(register, little_endian)
if result > 32767:
result -= 65536
return result
def readU16LE(self, register):
"""Read an unsigned 16-bit value from the specified register, in little
endian byte order."""
return self.readU16(register, little_endian=True)
def readU16BE(self, register):
"""Read an unsigned 16-bit value from the specified register, in big
endian byte order."""
return self.readU16(register, little_endian=False)
def readS16LE(self, register):
"""Read a signed 16-bit value from the specified register, in little
endian byte order."""
return self.readS16(register, little_endian=True)
def readS16BE(self, register):
"""Read a signed 16-bit value from the specified register, in big
endian byte order."""
return self.readS16(register, little_endian=False)
class BME280:
def __init__(self, mode=BME280_OSAMPLE_1, address=BME280_I2CADDR, i2c=None,
**kwargs):
# Check that mode is valid.
if mode not in [BME280_OSAMPLE_1, BME280_OSAMPLE_2, BME280_OSAMPLE_4,
BME280_OSAMPLE_8, BME280_OSAMPLE_16]:
raise ValueError(
'Unexpected mode value {0}. Set mode to one of '
'BME280_ULTRALOWPOWER, BME280_STANDARD, BME280_HIGHRES, or '
'BME280_ULTRAHIGHRES'.format(mode))
self._mode = mode
# Create I2C device.
if i2c is None:
raise ValueError('An I2C object is required.')
self._device = Device(address, i2c)
# Load calibration values.
self._load_calibration()
self._device.write8(BME280_REGISTER_CONTROL, 0x3F)
self.t_fine = 0
def _load_calibration(self):
self.dig_T1 = self._device.readU16LE(BME280_REGISTER_DIG_T1)
self.dig_T2 = self._device.readS16LE(BME280_REGISTER_DIG_T2)
self.dig_T3 = self._device.readS16LE(BME280_REGISTER_DIG_T3)
self.dig_P1 = self._device.readU16LE(BME280_REGISTER_DIG_P1)
self.dig_P2 = self._device.readS16LE(BME280_REGISTER_DIG_P2)
self.dig_P3 = self._device.readS16LE(BME280_REGISTER_DIG_P3)
self.dig_P4 = self._device.readS16LE(BME280_REGISTER_DIG_P4)
self.dig_P5 = self._device.readS16LE(BME280_REGISTER_DIG_P5)
self.dig_P6 = self._device.readS16LE(BME280_REGISTER_DIG_P6)
self.dig_P7 = self._device.readS16LE(BME280_REGISTER_DIG_P7)
self.dig_P8 = self._device.readS16LE(BME280_REGISTER_DIG_P8)
self.dig_P9 = self._device.readS16LE(BME280_REGISTER_DIG_P9)
self.dig_H1 = self._device.readU8(BME280_REGISTER_DIG_H1)
self.dig_H2 = self._device.readS16LE(BME280_REGISTER_DIG_H2)
self.dig_H3 = self._device.readU8(BME280_REGISTER_DIG_H3)
self.dig_H6 = self._device.readS8(BME280_REGISTER_DIG_H7)
h4 = self._device.readS8(BME280_REGISTER_DIG_H4)
h4 = (h4 << 24) >> 20
self.dig_H4 = h4 | (self._device.readU8(BME280_REGISTER_DIG_H5) & 0x0F)
h5 = self._device.readS8(BME280_REGISTER_DIG_H6)
h5 = (h5 << 24) >> 20
self.dig_H5 = h5 | (
self._device.readU8(BME280_REGISTER_DIG_H5) >> 4 & 0x0F)
def read_raw_temp(self):
"""Reads the raw (uncompensated) temperature from the sensor."""
meas = self._mode
self._device.write8(BME280_REGISTER_CONTROL_HUM, meas)
meas = self._mode << 5 | self._mode << 2 | 1
self._device.write8(BME280_REGISTER_CONTROL, meas)
sleep_time = 1250 + 2300 * (1 << self._mode)
sleep_time = sleep_time + 2300 * (1 << self._mode) + 575
sleep_time = sleep_time + 2300 * (1 << self._mode) + 575
time.sleep_us(sleep_time) # Wait the required time
msb = self._device.readU8(BME280_REGISTER_TEMP_DATA)
lsb = self._device.readU8(BME280_REGISTER_TEMP_DATA + 1)
xlsb = self._device.readU8(BME280_REGISTER_TEMP_DATA + 2)
raw = ((msb << 16) | (lsb << 8) | xlsb) >> 4
return raw
def read_raw_pressure(self):
"""Reads the raw (uncompensated) pressure level from the sensor."""
"""Assumes that the temperature has already been read """
"""i.e. that enough delay has been provided"""
msb = self._device.readU8(BME280_REGISTER_PRESSURE_DATA)
lsb = self._device.readU8(BME280_REGISTER_PRESSURE_DATA + 1)
xlsb = self._device.readU8(BME280_REGISTER_PRESSURE_DATA + 2)
raw = ((msb << 16) | (lsb << 8) | xlsb) >> 4
return raw
def read_raw_humidity(self):
"""Assumes that the temperature has already been read """
"""i.e. that enough delay has been provided"""
msb = self._device.readU8(BME280_REGISTER_HUMIDITY_DATA)
lsb = self._device.readU8(BME280_REGISTER_HUMIDITY_DATA + 1)
raw = (msb << 8) | lsb
return raw
def read_temperature(self):
"""Get the compensated temperature in 0.01 of a degree celsius."""
adc = self.read_raw_temp()
var1 = ((adc >> 3) - (self.dig_T1 << 1)) * (self.dig_T2 >> 11)
var2 = ((
(((adc >> 4) - self.dig_T1) * ((adc >> 4) - self.dig_T1)) >> 12) *
self.dig_T3) >> 14
self.t_fine = var1 + var2
return (self.t_fine * 5 + 128) >> 8
def read_pressure(self):
"""Gets the compensated pressure in Pascals."""
adc = self.read_raw_pressure()
var1 = self.t_fine - 128000
var2 = var1 * var1 * self.dig_P6
var2 = var2 + ((var1 * self.dig_P5) << 17)
var2 = var2 + (self.dig_P4 << 35)
var1 = (((var1 * var1 * self.dig_P3) >> 8) +
((var1 * self.dig_P2) >> 12))
var1 = (((1 << 47) + var1) * self.dig_P1) >> 33
if var1 == 0:
return 0
p = 1048576 - adc
p = (((p << 31) - var2) * 3125) // var1
var1 = (self.dig_P9 * (p >> 13) * (p >> 13)) >> 25
var2 = (self.dig_P8 * p) >> 19
return ((p + var1 + var2) >> 8) + (self.dig_P7 << 4)
def read_humidity(self):
adc = self.read_raw_humidity()
# print 'Raw humidity = {0:d}'.format (adc)
h = self.t_fine - 76800
h = (((((adc << 14) - (self.dig_H4 << 20) - (self.dig_H5 * h)) +
16384) >> 15) * (((((((h * self.dig_H6) >> 10) * (((h *
self.dig_H3) >> 11) + 32768)) >> 10) + 2097152) *
self.dig_H2 + 8192) >> 14))
h = h - (((((h >> 15) * (h >> 15)) >> 7) * self.dig_H1) >> 4)
h = 0 if h < 0 else h
h = 419430400 if h > 419430400 else h
return h >> 12
@property
def temperature(self):
"Return the temperature in degrees."
t = self.read_temperature()
ti = t // 100
td = t - ti * 100
return "{}.{:02d}C".format(ti, td)
@property
def pressure(self):
"Return the temperature in hPa."
p = self.read_pressure() // 256
pi = p // 100
pd = p - pi * 100
return "{}.{:02d}hPa".format(pi, pd)
@property
def humidity(self):
"Return the humidity in percent."
h = self.read_humidity()
hi = h // 1024
hd = h * 100 // 1024 - hi * 100
return "{}.{:02d}%".format(hi, hd)
Skematik: ESP32 dengan BME280
Hubungkan sensor BME280 ke papan pengembangan ESP32 seperti yang ditunjukkan pada diagram skematik berikut.
Skematik: ESP8266 NodeMCU dengan BME280
Jika Anda menggunakan ESP8266 NodeMCU, ikuti diagram berikut.
Kode
Setelah mengunggah pustaka-pustaka ke ESP32 atau ESP8266, salin kode berikut ke file `main.py`. Kode ini akan menerbitkan (publish) data suhu, kelembapan, dan tekanan ke topik esp/bme280/temperature, esp/bme280/humidity, dan esp/bme280/pressure setiap 5 detik.
import time
from umqttsimple import MQTTClient
import ubinascii
import machine
import micropython
import network
import esp
import BME280
from machine import Pin, I2C
esp.osdebug(None)
import gc
gc.collect()
ssid = 'REPLACE_WITH_YOUR_SSID'
password = 'REPLACE_WITH_YOUR_PASSWORD'
mqtt_server = '192.168.1.XXX'
#EXAMPLE IP ADDRESS
#mqtt_server = '192.168.1.106'
client_id = ubinascii.hexlify(machine.unique_id())
topic_pub_temp = b'esp/bme280/temperature'
topic_pub_hum = b'esp/bme280/humidity'
topic_pub_pres = b'esp/bme280/pressure'
last_message = 0
message_interval = 5
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect(ssid, password)
while station.isconnected() == False:
pass
print('Connection successful')
# ESP32 - Pin assignment
i2c = I2C(scl=Pin(22), sda=Pin(21), freq=10000)
# ESP8266 - Pin assignment
#i2c = I2C(scl=Pin(5), sda=Pin(4), freq=10000)
bme = BME280.BME280(i2c=i2c)
def connect_mqtt():
global client_id, mqtt_server
client = MQTTClient(client_id, mqtt_server)
#client = MQTTClient(client_id, mqtt_server, user=your_username, password=your_password)
client.connect()
print('Connected to %s MQTT broker' % (mqtt_server))
return client
def restart_and_reconnect():
print('Failed to connect to MQTT broker. Reconnecting...')
time.sleep(10)
machine.reset()
def read_bme_sensor():
try:
temp = b'%s' % bme.temperature[:-1]
#temp = (b'{0:3.1f},'.format((bme.read_temperature()/100) * (9/5) + 32))
hum = b'%s' % bme.humidity[:-1]
pres = b'%s'% bme.pressure[:-3]
return temp, hum, pres
#else:
# return('Invalid sensor readings.')
except OSError as e:
return('Failed to read sensor.')
try:
client = connect_mqtt()
except OSError as e:
restart_and_reconnect()
while True:
try:
if (time.time() - last_message) > message_interval:
temp, hum, pres = read_bme_sensor()
print(temp)
print(hum)
print(pres)
client.publish(topic_pub_temp, temp)
client.publish(topic_pub_hum, hum)
client.publish(topic_pub_pres, pres)
last_message = time.time()
except OSError as e:
restart_and_reconnect()
Cara Kerja Kode
Impor library-library berikut:
import time
from umqttsimple import MQTTClient
import ubinascii
import machine
import micropython
import network
import esp
import BME280
from machine import Pin, I2C
Pada variabel berikut, Anda perlu memasukkan kredensial jaringan dan alamat IP broker MQTT Anda.
ssid = 'REPLACE_WITH_YOUR_SSID'
password = 'REPLACE_WITH_YOUR_PASSWORD'
mqtt_server = 'REPLACE_WITH_YOUR_MQTT_BROKER_IP'
Sebagai contoh, alamat IP broker kami adalah: 192.168.1.106.
mqtt_server = '192.168.1.106'
Untuk membuat klien MQTT, kita perlu mendapatkan ID unik ESP. Itulah yang kita lakukan pada baris berikut (ID disimpan dalam variabel `client_id`).
client_id = ubinascii.hexlify(machine.unique_id())
Selanjutnya, buat topik-topik di mana ESP Anda akan menerbitkan data. Dalam contoh kami, ESP akan menerbitkan:
- Suhu ke topik esp/bme280/temperature
- Kelembaban ke topik esp/bme280/humidity
- Tekanan ke topik esp/bme280/pressure
topic_pub_temp = b'esp/bme280/temperature'
topic_pub_hum = b'esp/bme280/humidity'
topic_pub_pres = b'esp/bme280/pressure'
Kemudian, buat variabel-variabel berikut:
last_message = 0
message_interval = 5
Variabel `last_message` akan menyimpan waktu terakhir sebuah pesan dikirim. `message_interval` adalah interval waktu antara setiap pesan yang dikirim. Di sini, kami mengaturnya menjadi 5 detik (artinya pesan baru akan dikirim setiap 5 detik). Anda dapat mengubahnya sesuai keinginan.
Setelah itu, hubungkan ESP ke jaringan lokal Anda.
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect(ssid, password)
while station.isconnected() == False:
pass
print('Connection successful')
Buat instance `i2c` pada pin I2C ESP32 untuk berkomunikasi dengan sensor BME280:
i2c = I2C(scl=Pin(22), sda=Pin(21), freq=10000)
Jika Anda menggunakan ESP8266, gunakan baris berikut sebagai gantinya (untuk menggunakan pin I2C default ESP8266).
#i2c = I2C(scl=Pin(5), sda=Pin(4), freq=10000)
Buat instance BME280 pada pin I2C ESP:
bme = BME280.BME280(i2c=i2c)
Terhubung ke Broker MQTT
Fungsi `connect_mqtt()` membuat Klien MQTT dan menghubungkannya ke broker Anda.
def connect_mqtt():
global client_id, mqtt_server
client = MQTTClient(client_id, mqtt_server)
#client = MQTTClient(client_id, mqtt_server, user=your_username, password=your_password)
client.connect()
print('Connected to %s MQTT broker' % (mqtt_server))
return client
Jika broker MQTT Anda memerlukan username dan password, Anda harus menggunakan baris berikut dan memberikan username serta password broker sebagai argumen.
client = MQTTClient(client_id, mqtt_server, user=your_username, password=your_password)
Restart dan Sambung Ulang
Fungsi `restart_and_reconnect()` me-reset papan ESP32/ESP8266. Fungsi ini akan dipanggil jika kita tidak dapat menerbitkan pembacaan via MQTT (misalnya karena broker terputus).
def restart_and_reconnect():
print('Failed to connect to MQTT broker. Reconnecting...')
time.sleep(10)
machine.reset()
Membaca Sensor BME280
Kami membuat fungsi bernama `read_bme_sensor()` yang mengembalikan pembacaan suhu, kelembaban, dan tekanan terkini dari sensor BME280, serta menangani pengecualian jika gagal membaca sensor.
def read_bme_sensor():
try:
temp = b'%s' % bme.temperature[:-1]
#temp = (b'{0:3.1f},'.format((bme.read_temperature()/100) * (9/5) + 32))
hum = b'%s' % bme.humidity[:-1]
pres = b'%s'% bme.pressure[:-3]
return temp, hum, pres
#else:
# return('Invalid sensor readings.')
except OSError as e:
return('Failed to read sensor.')
Menerbitkan Pesan MQTT
Di dalam perulangan `while`, kami menerbitkan pembacaan baru dari BME280 setiap 5 detik.
Pertama, kami memeriksa apakah sudah waktunya untuk mendapatkan pembacaan baru:
if (time.time() - last_message) > message_interval:
Jika ya, minta pembacaan baru dari sensor BME280 dengan memanggil fungsi `read_bme_sensor()`. Suhu disimpan dalam variabel `temp`, kelembaban dalam variabel `hum`, dan tekanan dalam variabel `pres`.
temp, hum, pres = read_bme_sensor()
Terakhir, terbitkan pembacaan tersebut dengan menggunakan metode `publish()` pada objek `client`. Metode `publish()` menerima argumen berupa topik dan pesan, seperti berikut:
client.publish(topic_pub_temp, temp)
client.publish(topic_pub_hum, hum)
client.publish(topic_pub_pres, pres)
Terakhir, perbarui waktu ketika pesan terakhir dikirim:
last_message = time.time()
Jika ESP32 atau ESP8266 terputus dari broker dan tidak dapat menerbitkan pembacaan, panggil fungsi `restart_and_reconnect()` untuk me-reset papan ESP dan mencoba menyambung kembali ke broker.
except OSError as e:
restart_and_reconnect()
Setelah mengunggah kode, Anda akan mendapatkan pembacaan sensor baru di shell setiap 5 detik.
Sekarang, lanjutkan ke bagian berikutnya untuk menyiapkan Node-RED guna menerima data yang diterbitkan oleh ESP.
Mempersiapkan Dashboard Node-RED
ESP32 atau ESP8266 kini menerbitkan data sensor setiap 5 detik ke topik `esp/bme280/temperature`, `esp/bme280/humidity`, dan `esp/bme280/pressure`. Anda dapat menggunakan dashboard apa pun yang mendukung MQTT, atau perangkat lain yang mendukung MQTT, untuk berlangganan (subscribe) ke topik-topik tersebut dan menerima datanya.
Sebagai contoh, kami akan membuat alur (flow) sederhana menggunakan Node-RED untuk berlangganan ke topik-topik tersebut dan menampilkan datanya pada gauge.
Dengan Node-RED berjalan di Raspberry Pi Anda, buka alamat IP Raspberry Pi diikuti dengan `:1880`.
http://alamat-ip-raspberry-pi:1880
Antarmuka Node-RED akan terbuka. Seret tiga node "mqtt in" dan tiga node "gauge" ke dalam alur (flow).
Klik node MQTT dan edit propertinya.
Kolom Server merujuk ke broker MQTT. Dalam kasus kami, broker MQTT adalah Raspberry Pi itu sendiri, sehingga diatur ke `localhost:1883`. Jika Anda menggunakan broker MQTT cloud, Anda harus mengubah kolom tersebut.
Masukkan topik yang ingin Anda langgani dan QoS-nya. Node MQTT ini berlangganan ke topik `esp/bme280/temperature`.
Klik pada node mqtt in lainnya dan edit propertinya dengan server yang sama, namun untuk topik lain: `esp/bme280/humidity` dan `esp/bme280/pressure`.
Klik pada node gauge dan edit propertinya untuk setiap jenis pembacaan. Node berikut diatur untuk pembacaan suhu. Edit node gauge lainnya untuk pembacaan kelembapan dan tekanan.
Hubungkan node-node Anda seperti yang ditunjukkan di bawah:
Terakhir, deploy alur Anda (tekan tombol di sudut kanan atas).
Sebagai alternatif, Anda dapat membuka Menu > Import dan menyalin kode berikut ke Clipboard untuk membuat alur Node-RED Anda.
[{"id":"5a45b8da.52b0d8","type":"mqtt in","z":"b01416d3.f69f38","name":"","topic":"esp/bme280/temperature","qos":"1","datatype":"auto","broker":"8db3fac0.99dd48","x":310,"y":60,"wires":[["3042e15e.80a4ee"]]},{"id":"3042e15e.80a4ee","type":"ui_gauge","z":"b01416d3.f69f38","name":"","group":"37de8fe8.46846","order":2,"width":0,"height":0,"gtype":"gage","title":"Temperature","label":"ÂșC","format":"{{value}}","min":0,"max":"40","colors":["#00b500","#f7df09","#ca3838"],"seg1":"","seg2":"","x":590,"y":60,"wires":[]},{"id":"8ff168f0.0c74a8","type":"mqtt in","z":"b01416d3.f69f38","name":"","topic":"esp/bme280/humidity","qos":"1","datatype":"auto","broker":"8db3fac0.99dd48","x":300,"y":140,"wires":[["29251f29.6687c"]]},{"id":"29251f29.6687c","type":"ui_gauge","z":"b01416d3.f69f38","name":"","group":"37de8fe8.46846","order":2,"width":0,"height":0,"gtype":"gage","title":"Humidity","label":"%","format":"{{value}}","min":"30","max":"100","colors":["#53a4e6","#1d78a9","#4e38c9"],"seg1":"","seg2":"","x":580,"y":140,"wires":[]},{"id":"294f7eea.999d72","type":"mqtt in","z":"b01416d3.f69f38","name":"","topic":"esp/bme280/pressure","qos":"1","datatype":"auto","broker":"8db3fac0.99dd48","x":300,"y":220,"wires":[["58610d70.bb9764"]]},{"id":"58610d70.bb9764","type":"ui_gauge","z":"b01416d3.f69f38","name":"","group":"37de8fe8.46846","order":4,"width":0,"height":0,"gtype":"gage","title":"Pressure","label":"hPa","format":"{{value}}","min":0,"max":"1200","colors":["#b366ff","#8000ff","#440088"],"seg1":"","seg2":"","x":580,"y":220,"wires":[]},{"id":"8db3fac0.99dd48","type":"mqtt-broker","z":"","name":"","broker":"localhost","port":"1883","clientid":"","usetls":false,"compatmode":false,"keepalive":"60","cleansession":true,"birthTopic":"","birthQos":"0","birthPayload":"","closeTopic":"","closeQos":"0","closePayload":"","willTopic":"","willQos":"0","willPayload":""},{"id":"37de8fe8.46846","type":"ui_group","z":"","name":"BME280","tab":"53b8c8f9.cfbe48","order":1,"disp":true,"width":"6","collapse":false},{"id":"53b8c8f9.cfbe48","type":"ui_tab","z":"","name":"Home","icon":"dashboard","order":2,"disabled":false,"hidden":false}]
Demonstrasi
Buka alamat IP Raspberry Pi Anda diikuti dengan `:1880/ui`.
http://raspberry-pi-ip-address:1880/ui
Anda akan mendapatkan akses ke pembacaan suhu, kelembaban, dan tekanan BME280 terkini di Dashboard. Anda dapat menggunakan node tipe dashboard lainnya untuk menampilkan data dengan cara yang berbeda.
Selesai! Kini papan ESP32 atau ESP8266 Anda telah menerbitkan pembacaan suhu, kelembapan, dan tekanan dari BME280 ke Node-RED via MQTT menggunakan MicroPython.
Siap Untuk Membuat Proyek Impianmu Menjadi Kenyataan?
Klik di sini untuk chat langsung via WhatsApp dan dapatkan dukungan langsung dari tim ahli kami!






















0 on: "Tutorial MicroPython ESP32/ESP8266 - Publish Data Sensor BME280 via MQTT"